Skip to main content
Log in

Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The structure of Mn0.5Zn0.5Fe2O4 spinel ferrite nanoparticles is studied as a function of their size and the experimental conditions of their synthesis using X-ray absorption spectroscopy. The nanoparticles of different sizes down to approximately 2 nm and with a narrow size distribution were synthesized using co-precipitation in reverse microemulsions. Simultaneous refinement of the X-ray absorption fine structure (EXAFS) of three constituting metals shows a migration of Mn and Zn ions to the octahedral site of the spinel lattice compensated by the corresponding migration of the Fe ions. To a smaller extent, Mn ions switch the occupation site already in bulk and in larger nanoparticles, while a sporadic migration of Zn is detected only in the nanoparticles with sizes below approximately 5 nm. X-ray absorption near edge structure (XANES) reveals considerable variations in the position of the Mn K edge, suggesting the average Mn valence in the nanoparticles to be higher than 3+. Annealing at 500 °C relaxes the structure of as-synthesized nanoparticles toward the structure of the ceramic bulk standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ammar S, Jouini N, Fievet F, Stephan O, Marhic C, Richard M, Villain F, Chartier dit Moulin Ch, Brice S, Sainctavit Ph (2004) Influence of the synthesis parameters on the cation distribution of ZnFe2O4 nanoparticles obtained by forced hydrolysis in polyol medium. J Non-Cryst Solids 345&346:658–662

    Article  CAS  Google Scholar 

  • Batlle X, Labarta A (2002) Finite-size effect in fine particles: magnetic and transport properties. J Phys D Appl Phys 35:R15–R42

    Article  ADS  CAS  Google Scholar 

  • Calvin S, Carpenter EE, Harris VG, Morrison SA (2002a) Use of multiple-edge refinement of extended X-ray absorption fine structure to determine site occupancy in mixed ferrite nanoparticles. Appl Phys Lett 81:3828–3830

    Article  ADS  CAS  Google Scholar 

  • Calvin S, Carpenter EE, Ravel B, Harris VG, Morrison SA (2002b) Multiedge refinement of extended X-ray absorption fine structure of manganese zinc ferrite nanoparticles. Phys Rev B 66:224405-1–224405-13

    Article  ADS  CAS  Google Scholar 

  • Calvin S, Luo SX, Caragianis-Broadbridge C, McGuinness JK, Anderson E, Lehman A, Wee KH, Morrison SA, Kurihara LK (2005) Comparison of extended X-ray absorption fine structure and Scherrer analysis of X-ray diffraction as methods for determining mean sizes of polydisperse nanoparticles. Appl Phys Lett 87:233102-1–233102-3

    Article  ADS  CAS  Google Scholar 

  • Carpenter EE, O’Connor CJ, Harris VG (1999) Atomic structure and magnetic properties of MnFe2O4 nanoparticles produced by reverse micelle synthesis. J Appl Phys 85:5175–5177

    Article  ADS  CAS  Google Scholar 

  • Chen JP, Sorensen CM, Klabunde KJ, Hadjipanayis GC, Devlin E, Kostikas A (1996) Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. Phys Rev B 54:9288–9296

    Article  ADS  CAS  Google Scholar 

  • Cullity BD (1987) Elements of X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  • Drofenik M, Žnidaršič A, Makovec D (1998) Influence of the addition of Bi2O3 on the grain growth and magnetic permeability of MnZn ferrites. J Am Ceram Soc 81:2841–2848

    Article  CAS  Google Scholar 

  • Fetami DJ, Harris VG, Browning VM, Kirkland JP (1998) Processing and cation redistribution of MnZn ferrites via high-energy ball milling. J Appl Phys 83:6867–6869

    Article  ADS  Google Scholar 

  • Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca GJ (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857

    Article  ADS  CAS  Google Scholar 

  • Jeyadevan B, Tohji T, Nakatsuka KJ (1994) Structure-analysis of coprecipitated ZnFe2O4 by extended X-ray absorption fine-structure. Appl Phys 76:6325–6327

    Article  CAS  Google Scholar 

  • Jeyadevan B, Tohji T, Nakatsuka K, Narayanasamy A (2000) Irregular distribution of metal ions prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure. J Magn Magn Mater 217:99–105

    Article  ADS  CAS  Google Scholar 

  • Kamiyama T, Haneda K, Sato T, Ikeda S, Asano H (1992) Cation distribution in ZnFe2O4 fine particles studied by neutron powder diffraction. Solid State Commun 81:563–566

    Article  ADS  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359–372

    Article  ADS  CAS  Google Scholar 

  • Kodre A, Arčon I, Batista J, Pintar A (1999) EXAFS analysis of Pd atomic clusters. J Synchrotron Radiat 6:458–459

    Article  PubMed  CAS  Google Scholar 

  • Koenig U, Chol G (1968) Roentgenbeugungs- und Neutronenbeugungsuntersuchungen an Ferriten der Reihe MnxZn1−xFe2O4. J Appl Crystallogr 1:124–126

    Article  CAS  Google Scholar 

  • Košak A, Makovec D, Drofenik M (2005) Preparation of spinel ferrite nano-particles using precipitation in water-in-oil microemulsions. J Metastable Nanocryst Mater 23:251–254

    Article  Google Scholar 

  • Makovec D, Košak A, Drofenik M (2004) The preparation of MnZn-ferrite nanoparticles in water-CTAB-hexanol microemulsions. Nanotechnology 15:S160–S166

    Article  ADS  CAS  Google Scholar 

  • Pileni MP (1993) Reverse micelles as microreactors. J Phys Chem 97:6961–6973

    Article  CAS  Google Scholar 

  • Ravel B, Newville M (2005) ATENA, ARTHEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Haneda K, Seki M, Iijima T (1990) Morphology and magnetic properties of ultrafine ZnFe2O4 particles. Appl Phys A50:13–16

    ADS  CAS  Google Scholar 

  • Smit J, Wijn HPJ (1959) Ferrites. Philips’ Technical Library, Eindhoven

    Google Scholar 

  • Zabukovec Logar N, Novak Tušar N, Mali G, Mazaj M, Arčon I, Arčon D, Rečnik A, Ristić A, Kaučič V (2006) Manganese-modified hexagonal mesoporous aluminophosphate MnHMA: synthesis and characterization. Microporous Mesoporous Mater 96:386–395

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Slovenian Research Agency, the Ministry of Higher Education, Science and Technology of the Republic of Slovenia within the National Research Program and by DESY and the European Community under Contract RII3-CT-2004-506008 (IA-SFS). Provision of synchrotron radiation facilities by HASYLAB (project II-04-065 EC) is acknowledged. The authors would also like to thank Dr. Aljoša Košak for help with the synthesis of the nanoparticles and E. Welter of HASYLAB for expert advice on beamline operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darko Makovec.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makovec, D., Kodre, A., Arčon, I. et al. Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J Nanopart Res 11, 1145–1158 (2009). https://doi.org/10.1007/s11051-008-9510-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9510-0

Keywords

Navigation